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What is AI?

“The study of [intelligent] agents that 
receive precepts from the environment 
and take actions. Each such agent is 
implemented by a function that maps 

percepts to actions […].” 
Russel & Norvig, 2010
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What is AI?
“A machine-based system designed to 

operate with varying levels of autonomy 
and that may exhibit adaptiveness after 

deployment and that, for explicit or 
implicit objectives, infers, from the input it 
receives, how to generate outputs such as 

predictions, content, recommendations, 
or decisions that can influence physical or 

virtual environments.” 
EU AI Act
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Different schools of thought
Research in AI as… 

• … building models (“machines”) that think like humans 

• … building models (“machines”) that act like humans 

• … building models (“machines”) that act rationally 

• … building models (“machines”) that think rationally
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Two heads of AI

7

Learning Planning 

Knowledge 
representation



Two heads of AI
• Planning: Given the current situation, what is the best action (sequence of actions) 

that takes me to my destiny?
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Two heads of AI
• Learning: How to use experience to improve my performance in my current task (in 

terms of action choice)?
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3. AI in science: global trends and international benchmarking 

3.1 Global trends of AI in science 

The field of AI is growing at a faster rate than that of scientific production as 
a whole. In general, global scientific activity has grown at around 5% per year 
between 2004 and 2021. In the same period, the annual growth rate of AI-related 
publications has been around or above 15%, except for the years between 2010 and 
2012, when scientific production in the field of AI stagnated (Figure 1), presumably 
because of the reorientation in research priorities and funding linked to the onset of 
the financial crisis. The slowdown observed since 2019 is presumably attributable 
to the effects of the COVID-19 pandemic.  

Figure 1. Growth in scientific activity (3-year average yearly growth)  

 

 
Source: European Commission, DG Research & Innovation, calculations based on Web of 
Science data. Annual growth calculated as a 3-year rolling average. 
Scientific activity related to AI applications accounts for a significant share of 
total publications in the field of AI. Between 2000 and 2021, the evolution 
undergone by the total number of AI publications and publications related exclusively 
to AI applications in science followed a similar pattern of growth (Figure 2 – left 
panel), with the latter accounting for around 50% of total AI publications up to 2018. 
Since that date, there has been a significant increase in this share, indicating a 
decoupling of AI applications in science from the overall growth in the field of AI. 
This indicates that AI applications in science are growing faster than the AI field 
as a whole (Figure 2 – right panel). 

Annual growth in 
scientific activity

Source: European Commision, DG in R & D. Computation using Web of Science data.  
Annual growth computed as a 3-year rolling average.
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Figure 2. Number of publications (left) and share of publications on AI 
applications in science (right) 

 
Source: European Commission, DG Research & Innovation, calculations based on Web of 
Science data 

The impact of AI could vary considerably across different scientific domains. 
Over the last 5 years, applied sciences (such as, engineering and materials), as well 
as the natural and life sciences are the fields that have reported the highest number 
of publications on AI applications. The social sciences, including economics and the 
humanities, account for a lower share of publications in which AI is used as a tool 
(Figure 3). In terms of growth, the material sciences is the discipline with the highest 
growth rate (almost 50% on a yearly basis), followed by medicine (clinical and 
general – around 45%). Surprisingly, the neurosciences, one of the disciplines that 
served as a reference for the development of AI, presents one of the lowest growth 
rates (22%), while the lowest is found in the discipline of art and literature (5%). 

Figure 3. Number of publications (2017–2021) on AI per scientific domain  

 

Source: European Commision, DG in R & D. Computation using Web of Science data

N. of publications
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Success stories
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Tokamak
• Delgrave et al (2022) proposed a novel approach, based on reinforcement learning, 

to optimize the magnetic control of tokamak
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the control system. A single computationally inexpensive controller 
replaces the nested control architecture, and an internalized state 
reconstruction removes the requirement for independent equilib-
rium reconstruction. These combined benefits reduce the control-
ler development cycle and accelerate the study of alternative plasma 
configurations. Indeed, artificial intelligence has recently been 
identified as a ‘Priority Research Opportunity’ for fusion control14, 
building on demonstrated successes in reconstructing plasma-shape 
parameters15,16, accelerating simulations using surrogate models17,18 
and detecting impending plasma disruptions19. RL has not, however, 
been used for magnetic controller design, which is challenging due to 
high-dimensional measurements and actuation, long time horizons, 
rapid instability growth rates and the need to infer the plasma shape 
through indirect measurements.

In this work, we present an RL-designed magnetic controller and 
experimentally verify its performance on a tokamak. The control poli-
cies are learned through interaction with a tokamak simulator and are 
shown to be directly capable of tokamak magnetic control on hardware, 
successfully bridging the ‘sim-to-real’ gap. This enables a fundamen-
tal shift from engineering-driven control of a pre-designed state to 
artificial-intelligence-driven optimization of objectives specified by 
an operator. We demonstrate the effectiveness of our controllers in 
experiments carried out on the Tokamak à Configuration Variable 
(TCV)1,2, in which we demonstrate control of a variety of plasma shapes, 
including elongated ones, such as those foreseen in ITER, as well as 
advanced configurations, such as negative triangularity and ‘snowflake’ 
plasmas. Additionally, we demonstrate a sustained configuration in 
which two separate plasma ‘droplets’ are simultaneously maintained 

within the vessel. Tokamak magnetic control is one of the most com-
plex real-world systems to which RL has been applied. This is a promis-
ing new direction for plasma controller design, with the potential to 
accelerate fusion science, explore new configurations and aid in future 
tokamak development.

Learning control and training architecture
Our architecture, depicted in Fig. 1, is a flexible approach for design-
ing tokamak magnetic confinement controllers. The approach has 
three main phases. First, a designer specifies objectives for the experi-
ment, potentially accompanied by time-varying control targets. Sec-
ond, a deep RL algorithm interacts with a tokamak simulator to find 
a near-optimal control policy to meet the specified goals. Third, the 
control policy, represented as a neural network, is run directly (‘zero 
shot’) on tokamak hardware in real time.

In the first phase, the experimental goal is specified by a set of objec-
tives that can contain a wide variety of desired properties (Extended 
Data Table 4). These properties range from basic stabilization of posi-
tion and plasma current to sophisticated combinations of several 
time-varying targets, including a precise shape outline with specified 
elongation, triangularity and X-point location. These objectives are 
then combined into a ‘reward function’ that assigns a scalar quality 
measure to the state at each time step. This function also penalizes 
the control policy for reaching undesired terminal states, as discussed 
below. Crucially, a well-designed reward function will be minimally 
specified, giving the learning algorithm maximum flexibility to attain 
the desired outcome.
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Fig. 1 | Representation of the components of our controller design 
architecture. a, Depiction of the learning loop. The controller sends voltage 
commands on the basis of the current plasma state and control targets. These 
data are sent to the replay buffer, which feeds data to the learner to update the 
policy. b, Our environment interaction loop, consisting of a power supply 
model, sensing model, environment physical parameter variation and reward 
computation. c, Our control policy is an MLP with three hidden layers that takes 

measurements and control targets and outputs voltage commands. d–f, The 
interaction of TCV and the real-time-deployed control system implemented 
using either a conventional controller composed of many subcomponents (f) 
or our architecture using a single deep neural network to control all 19 coils 
directly (e). g, A depiction of TCV and the 19 actuated coils. The vessel is  
1.5 m high, with minor radius 0.88 m and vessel half-width 0.26 m. h, A cross 
section of the vessel and plasma, with the important aspects labelled.



Tokamak
• Delgrave et al (2022) proposed a novel approach, based on reinforcement learning, 

to optimize the magnetic control of tokamak
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the control system. A single computationally inexpensive controller 
replaces the nested control architecture, and an internalized state 
reconstruction removes the requirement for independent equilib-
rium reconstruction. These combined benefits reduce the control-
ler development cycle and accelerate the study of alternative plasma 
configurations. Indeed, artificial intelligence has recently been 
identified as a ‘Priority Research Opportunity’ for fusion control14, 
building on demonstrated successes in reconstructing plasma-shape 
parameters15,16, accelerating simulations using surrogate models17,18 
and detecting impending plasma disruptions19. RL has not, however, 
been used for magnetic controller design, which is challenging due to 
high-dimensional measurements and actuation, long time horizons, 
rapid instability growth rates and the need to infer the plasma shape 
through indirect measurements.

In this work, we present an RL-designed magnetic controller and 
experimentally verify its performance on a tokamak. The control poli-
cies are learned through interaction with a tokamak simulator and are 
shown to be directly capable of tokamak magnetic control on hardware, 
successfully bridging the ‘sim-to-real’ gap. This enables a fundamen-
tal shift from engineering-driven control of a pre-designed state to 
artificial-intelligence-driven optimization of objectives specified by 
an operator. We demonstrate the effectiveness of our controllers in 
experiments carried out on the Tokamak à Configuration Variable 
(TCV)1,2, in which we demonstrate control of a variety of plasma shapes, 
including elongated ones, such as those foreseen in ITER, as well as 
advanced configurations, such as negative triangularity and ‘snowflake’ 
plasmas. Additionally, we demonstrate a sustained configuration in 
which two separate plasma ‘droplets’ are simultaneously maintained 

within the vessel. Tokamak magnetic control is one of the most com-
plex real-world systems to which RL has been applied. This is a promis-
ing new direction for plasma controller design, with the potential to 
accelerate fusion science, explore new configurations and aid in future 
tokamak development.

Learning control and training architecture
Our architecture, depicted in Fig. 1, is a flexible approach for design-
ing tokamak magnetic confinement controllers. The approach has 
three main phases. First, a designer specifies objectives for the experi-
ment, potentially accompanied by time-varying control targets. Sec-
ond, a deep RL algorithm interacts with a tokamak simulator to find 
a near-optimal control policy to meet the specified goals. Third, the 
control policy, represented as a neural network, is run directly (‘zero 
shot’) on tokamak hardware in real time.

In the first phase, the experimental goal is specified by a set of objec-
tives that can contain a wide variety of desired properties (Extended 
Data Table 4). These properties range from basic stabilization of posi-
tion and plasma current to sophisticated combinations of several 
time-varying targets, including a precise shape outline with specified 
elongation, triangularity and X-point location. These objectives are 
then combined into a ‘reward function’ that assigns a scalar quality 
measure to the state at each time step. This function also penalizes 
the control policy for reaching undesired terminal states, as discussed 
below. Crucially, a well-designed reward function will be minimally 
specified, giving the learning algorithm maximum flexibility to attain 
the desired outcome.
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Fig. 1 | Representation of the components of our controller design 
architecture. a, Depiction of the learning loop. The controller sends voltage 
commands on the basis of the current plasma state and control targets. These 
data are sent to the replay buffer, which feeds data to the learner to update the 
policy. b, Our environment interaction loop, consisting of a power supply 
model, sensing model, environment physical parameter variation and reward 
computation. c, Our control policy is an MLP with three hidden layers that takes 

measurements and control targets and outputs voltage commands. d–f, The 
interaction of TCV and the real-time-deployed control system implemented 
using either a conventional controller composed of many subcomponents (f) 
or our architecture using a single deep neural network to control all 19 coils 
directly (e). g, A depiction of TCV and the 19 actuated coils. The vessel is  
1.5 m high, with minor radius 0.88 m and vessel half-width 0.26 m. h, A cross 
section of the vessel and plasma, with the important aspects labelled.
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the control system. A single computationally inexpensive controller 

replaces the nested control architecture, and an internalized state 

reconstruction removes the requirement for independent equilib-

rium reconstruction. These combined benefits reduce the control-

ler development cycle and accelerate the study of alternative plasma 

configurations. Indeed, artificial intelligence has recently been 

identified as a ‘Priority Research Opportunity’ for fusion control14, 

building on demonstrated successes in reconstructing plasma-shape 

parameters15,16, accelerating simulations using surrogate models17,18 

and detecting impending plasma disruptions19. RL has not, however, 

been used for magnetic controller design, which is challenging due to 

high-dimensional measurements and actuation, long time horizons, 

rapid instability growth rates and the need to infer the plasma shape 

through indirect measurements.
In this work, we present an RL-designed magnetic controller and 

experimentally verify its performance on a tokamak. The control poli-

cies are learned through interaction with a tokamak simulator and are 

shown to be directly capable of tokamak magnetic control on hardware, 

successfully bridging the ‘sim-to-real’ gap. This enables a fundamen-

tal shift from engineering-driven control of a pre-designed state to 

artificial-intelligence-driven optimization of objectives specified by 

an operator. We demonstrate the effectiveness of our controllers in 

experiments carried out on the Tokamak à Configuration Variable 

(TCV)1,2, in which we demonstrate control of a variety of plasma shapes, 

including elongated ones, such as those foreseen in ITER, as well as 

advanced configurations, such as negative triangularity and ‘snowflake’ 

plasmas. Additionally, we demonstrate a sustained configuration in 

which two separate plasma ‘droplets’ are simultaneously maintained 

within the vessel. Tokamak magnetic control is one of the most com-

plex real-world systems to which RL has been applied. This is a promis-

ing new direction for plasma controller design, with the potential to 

accelerate fusion science, explore new configurations and aid in future 

tokamak development.

Learning control and training architecture

Our architecture, depicted in Fig. 1, is a flexible approach for design-

ing tokamak magnetic confinement controllers. The approach has 

three main phases. First, a designer specifies objectives for the experi-

ment, potentially accompanied by time-varying control targets. Sec-

ond, a deep RL algorithm interacts with a tokamak simulator to find 

a near-optimal control policy to meet the specified goals. Third, the 

control policy, represented as a neural network, is run directly (‘zero 

shot’) on tokamak hardware in real time.
In the first phase, the experimental goal is specified by a set of objec-

tives that can contain a wide variety of desired properties (Extended 

Data Table 4). These properties range from basic stabilization of posi-

tion and plasma current to sophisticated combinations of several 

time-varying targets, including a precise shape outline with specified 

elongation, triangularity and X-point location. These objectives are 

then combined into a ‘reward function’ that assigns a scalar quality 

measure to the state at each time step. This function also penalizes 

the control policy for reaching undesired terminal states, as discussed 

below. Crucially, a well-designed reward function will be minimally 

specified, giving the learning algorithm maximum flexibility to attain 

the desired outcome.

Learner

Replay
buffer

Sensor
model

Reward

Physical
parameters

t

Forward
Grad–Shafranov

solver (FGE) 

Power
supply

Control
policy

parameters

{a, m, t, r}

Environment

Targets

m

Control
policy m

a

t

a
Voltage commands

Measurements

r

Actor

16 Poloidal
field coils

1

Ohmic
coils

X-point
in vacuum

Vessel

Limiter

Baffle
Active
X-point

LegsStrike 
points

Plasma
boundary

Isoflux line

Axis R, Z
position

F

Plasma

a
m

t

Inputs: m = 92, t ≤ 132
Neural net: MLP = 3 × 256

Outputs: a = 19

Terminate

2

Control policySimulated environmentLearning loop

Deployment
Vessel cross section

Real-time
control
system

Targets
a

m

a

m

Control
policy

Plasma 
shape

Plasma
shape

Z
Ip, R, Z, shape

targets

Offline
feedforward
generation

t

Coil-current
controlCurrents

Voltages

IpR

Z IpR

m

Observers

Controllers

Our architecture

Conventional control

TCV

e or f

a
+

E

+ Fast
coil

G

a b

S
im

ul
at

io
n

st
at

e

c

d

e

f

g h

Fig. 1 | Representation of the components of our controller design 

architecture. a, Depiction of the learning loop. The controller sends voltage 

commands on the basis of the current plasma state and control targets. These 

data are sent to the replay buffer, which feeds data to the learner to update the 

policy. b, Our environment interaction loop, consisting of a power supply 

model, sensing model, environment physical parameter variation and reward 

computation. c, Our control policy is an MLP with three hidden layers that takes 

measurements and control targets and outputs voltage commands. d–f, The 

interaction of TCV and the real-time-deployed control system implemented 

using either a conventional controller composed of many subcomponents (f) 

or our architecture using a single deep neural network to control all 19 coils 

directly (e). g, A depiction of TCV and the 19 actuated coils. The vessel is  

1.5 m high, with minor radius 0.88 m and vessel half-width 0.26 m. h, A cross 

section of the vessel and plasma, with the important aspects labelled.



Alphafold
• Jumper et al (2021) proposed a new neural network architecture that - given a 

protein’s aminoacid sequence - predicts the 3D structure of that protein
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for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 
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Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, number of 
residues (Nres in the main text); c, number of channels.



Wildlife preservation
• Tambe et al (Xu et al, 2022) developed the PAWS system (Protection Assistant for 

Wildlife Security)
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Wildlife preservation
• Tambe et al (Xu et al, 2022) developed the PAWS system (Protection Assistant for 

Wildlife Security) 

• PAWS allows forest rangers to optimize their patrols to maximize the probability of 
finding snares and other traps
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Fighting poverty
• Ermon et al (2020) used publicly available satellite images to - using the amout of 

nightlight - predict the levels of poverty in different countries in África
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distribution. Our best performing satellite models again perform
well on this task (Fig. 5b). For instance, using MS+NL estimates
to allocate a program to households below median wealth yields a
targeting accuracy of 81%, versus 75% for a CNN Transfer model
and 62% for a scalar nightlights model. Importantly, these
estimates likely understate true targeting accuracy given that
ground data are themselves measured with some noise.

Scalability. To demonstrate the scalability of our overall
approach, we construct a 7.65 km/pixel gridded wealth map of
Nigeria, Africa’s most populous country, for the years 2012–2014
using our model that combines daytime multispectral and
nighttime imagery (Fig. 6). Visualizing both inputs and model
predictions shows how our model learns to combine the two
inputs, for example ignoring very bright nightlights pixels asso-
ciated with oil flaring in the southern part of the country that are

not also associated with high wealth (Fig. 6b–g). Pixels are easily
aggregated to higher administrative units using existing popula-
tion rasters, and show strong latitudinal gradients of wealth
across the country (Fig. 6h).

Generating the pixel-level raster involves processing ~9.1 billion
pixels of daytime and nighttime imagery. Once the pipeline is
developed, going from these raw imagery inputs to the prediction
raster takes <30 h, including 4 h of model training on a NVIDIA
Titan X GPU (excluding hyperparameter search), and roughly
24 h for imagery processing and raster generation. By compar-
ison, a nationally representative household survey typically takes
months to years to execute, at an average cost of $1–2 million
USD6. While this comparison does not imply that our approach
can replace household surveys, our approach can accelerate
estimation of local-level wealth in years or in locations where
survey data are unavailable.
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Fig. 5 Using satellite-based wealth predictions in downstream tasks. a Cross-sectional relationship between average maximum temperature and wealth
across survey locations, as estimated with survey wealth data (black) and estimates from three satellite-based models. Each line is a bootstrap of the
cross-sectional regression (100 bootstraps, sampling villages with replacement). Best-performing models recover temperature-wealth relationships that
are closest to estimates using ground-measured data, and CNN-based models perform much better than scalar nightlights models. b Evaluation of a
hypothetical targeting program in which all villages below some desired threshold in the asset distribution receive the program (e.g. a cash transfer) and
villages above the threshold do not. We compare targeting accuracy, defined as the percent of villages receiving the correct program, using estimates from
the same four satellite-based models as in a, under the assumption that survey-based ground data provide the true asset distribution. For instance, using
MS+NL estimates to allocate a program to households below median wealth yields a targeting accuracy of 81%, versus 75% for CNN Transfer and 62% for
scalar NL models. These estimates likely understate true targeting accuracy, given that ground data are themselves measured with some noise.
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Fig. 6 Spatial extent of imagery allows wealth predictions at scale. a Satellite-based wealth estimates across Nigeria at pixel level. b, d Imagery inputs to
model over region in Southern Nigeria depicted in box in a. f Ground truth input to model over the same region. c, e, g Model predictions with just
nightlights (NL) as input, just multispectral (MS) imagery as input, and the concatenated NL and MS features as input. In this region, the model appears to
rely more heavily on MS than NL inputs, ignoring light blooms from gas flares visible in b. h Deciles of satellite-based wealth index across Nigeria,
population weighted using Global Human Settlement Layer population raster, and aggregated to Local Government Area level from the Database of Global
Administrative Areas.
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“What about my research?”
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How can AI help?
• AI’s impact in research ranges from search to discovery
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Search 

Accessing knowledge in data

Discovery 

Identify new patterns in an  

open-ended manner



Tools
Literature review (summarization, reference search) 

• Scite (scite.ai) 

• Elicit (elicit.com) 

• Perplexity (perplexity.ai)
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http://www.scite.ai
http://elicit.com
http://www.perplexity.ai


Tools
Support to document production and collaborative writing 

• Bit AI (bit.ai)
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http://www.bit.ai


Caveats
• Although these tools can help, texts produced by AI tend to be verbose and exhibit 

complex language 

• This can impact the clarity of the message you are trying to convey 

• Using these tools, for example, to write paper reviews may not be well accepted by 
authors 

• Authors expect to have their papers reviewed by peers and receive constructive 
criticisms
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