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What is Al?

“The study of [intelligent| agents that
receive precepts from the environment
and take actions. Each such agent is
implemented by a function that maps
percepts to actions |[...].”

Russel & Norvig, 2010

Artificial Intelligence
A Modern /\ppronch
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What is Al?

Percepts ' Agent ~ Actions
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What is Al?

"A machine-based system designed to
operate with varying levels of autonomy
and that may exhibit adaptiveness after

deployment and that, for explicit or
implicit objectives, infers, from the input it
receives, how to generate outputs such as
predictions, content, recommendations,
or decisions that can influence physical or
virtual environments.”

EU Al Act
W TECNICO LISBOA

£
EU Al Act

Proposal for a

Regulation of the European Parliament and of
the Council Laying Down Harmonsed Rules on

Artificial Intelligence (Artificial Intelligence Act)
and Amending Certain Union Legislative Acts

2021/0106 (COD)

European
Commission



What is Al?

Objectives
O
Agent
Percepts | “machine-based - Actions
Inputs system’ Predictions

Content
Recommendations
Decisions
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Different schools of thought

Research in Al as...

e ... building models (“machines”) that think like humans
e ... building models (“machines”) that act like humans

» ... building models (“machines”) that act rationally

e ... building models (“machines”) that think rationally
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Two heads of Al




Two heads of Al
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Two heads of Al

 |earning: How to use experience to improve my performance in my current task (in
terms of action choice)?

Curre i
situati®™ %

m—

Neural
network
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Why all the fuss?

Microsoft's new breakthrough: Al that's as good as humans at listening... on the phone

Microsoft's new speech-recognition record means professional transcribers could be among the first to
lose their jobs to artificial intelligence.

@ n @ f ¥ M A

- Written by Liam Tung,
. Contributor

on October 19, 2016 | Topic: Innovation
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Why all the fuss?

Google unleashes deep learning techon
language with Neural Machine

Translation

Devin Coldewey @techcrunch / 9:14 PM GMT+1 * September 27,2016

%] Image Credits: razum/ Shutterstock

ne language to another is hard, and creating a system that does it
ause there are just so many words, phrases and
ets for breakfast.

Translating from O
automatically is @ major challenge, partly bec
rules to deal with. Fortunately, neural networks eat big, complicated data s
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Why all the fuss?

Dall-E 2: Why the Al image generator is a
revolutionary invention

By Alex Hughes Published: 06th May, 2022 at 09:25

Subscribe to BBC Science Focus Magazine and get 6 issues for just £9.99

A piece of software is able to generate detailed images from just a short,
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Why all the fuss?

‘It will change everything’:
DeepMind’s Al makes gigantic leap
insolving protein structures

Google’s deep-learning program for determinin

g the 3D shapes of proteins stands to
transform biology, say scientists.

Ewen Callaway

Yy f =
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W TECNICO LISBOA y




Why all the fuss?

This New Al Rlgorithm Gan Master Games
Without Being Told The Rules

BY SHRADDHA GOLE
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Why all the fuss?

DeepMind’s StarCraft-playing Al
beats 99.8 per cent of human
gamers

00OPDOOG

TECHNOLOGY 30 October 2019

By Donna Lu
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Why all the fuss?

| Annual growth inj
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Source: European Commision, DG in R & D. Computation using Web of Science data.

. Annual growth computed as a 3-year rolling average.
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Why all the fuss?

= Al Al papers Applications Al in science
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) Source: European Commision, DG in R & D. Computation using Web of Science data
W TECNICO LISBOA

18



Why all the fuss?

| Percentage of publications|
|___in Al applications
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|A and different disciplines

0 20000 40000 60000 80000

Engineering

Biomedical Sciences

Geosciences

Physics and Mathematics
Chemistry

Neurosciences

Environmental Sciences

Material Sciences

Clinical Medicine

General Medicine and Public Health
Education and Information
Regional and Urban Planning
Economics, Management, and Finance
Agriculture

Language and Culture

Ecology

Infectious Diseases

Social Science, Philosophy, and Religion

IN. of publications in Al

History, Politics, and Law
Art and Literature
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Al for everyone
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Baselines3.

It provides scripts for training, evaluating agents,
tuning hyperparameters, plotting results and
recording videos.

mmon environments

In addition, it includes a collection of tuned hyperparameters for co
and RL algorithms, and agents trained with those settings.

We are looking for contributors to complete the collection!

Goals of this repository:

AN 3 I 3]

1. Provide a simple interface to train and enjoy RL agents

2. Benchmark the different Reinforcement Learning algorithms

3. Provide tuned hyperparameters for each environment and RL algorithm
B3

4. Have fun with the trai

ned agents!
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Al for everyone

o @ m Implementing a Character-Le X +

& G M@ = https://medium.c... Q W B © 0o A £} 4‘&

& OneDrive IST »

[4 Write @ Signin

M GMAIL E Calendar & Personal drive & ST Drive

N d & m (QQ search

model.

Furthermore, we will evaluate any setting of the neural network’s
parameters using a loss function. We'll examine its probability distributions
and use the labels, which are essentially the :dentities of the next character.
Gradient-based optimization will then be employed to adjust the network’s
parameters, ensuring the neural network accurately predicts the next

character.

First step is to create 2 training set of all the bigrams for the model

Create Bigram dataset for neural network

Create a training set of bigrams (X, ¥)- Given the first character of Bigram, we
try to predict the next character. xs’ holds numerical representation of

names characters. While ‘ys’ are targets/labels.

4 Create training set of bigrams (x,Yy) -
4 Given the first character of Bigram, we try to predict the next character.
xs, ys = [1, [
for w in words:
chs = ['.'] * Tist(w) + (AU
for chl, ch2 in zip(chs, chs[1:]):
xs.append(stoﬁ[chl])
ys.append(stoi[chZ])
XS = torch.tensor(xs)
ys = torch.tensor(ys)
print(words[:Z])
print(f‘xs: {xs[:lz]}‘)
print(f‘ys: {ys[:12]}')
['emma', 1olivia'l
tensor([ @, 5, 13, 13, 1, 0, 15, 12, 9, 22, 9 11)
tensor([ 5, 13, 13, 1, & 15, 12, 9,22, 9 L 01)

nun

Feeding integers into neural network? One-hot encoding
How to feed these examples into the neural network? The integer values (like
1 for A, 2 for ‘B, etc.), can imply a certain ordinal relationship or magnitude
that doesn’t actually exist in the context of language. For instance, the model
might incorrectly interoret that ‘B’ (2)is twice as much as ‘A 1) or that ‘C (3) v __1
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) @ m Mastering Atari Game: Deep X +

<%
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Mastering Atari Game: Deep Q-
Network (DQN) Agents in
Reinforcement Learning

Kabila MD Musa - Follow
7minread - Oct15,2023

Photo by ELLA DON on Unsplash

Reinforcement Learning (RL) is a subfield of machine learning where an
agent learns to make sequential decisions by interacting with an
environment. One of the popular techniques in RL is the Deep Q-Network
(DQN), which combines Q-learning with deep neural networks to tackle
complex decision-making problems. In this blog post, we will explore DQN
agents implemented in three different OpenAl Gym environments: CartPole,

Space Invaders, and Pacman.
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Success stories
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Tokamak

* Delgrave et al (2022) proposed a novel approach, based on reinforcement learning,
to optimize the magnetic control of tokamak

e Our architecture

-
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Tokamak

* Delgrave et al (2022) proposed a novel approach, based on reinforcement learning,

to optimize the magnetic control of tokamak
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Alphafold

 Jumper et al (2021) proposed a new neural network architecture that - given a
protein's aminoacid sequence - predicts the 3D structure of that protein

O |
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Wildlife preservation

» Tambe et al (Xu et al, 2022) developed the PAWS system (Protection Assistant for
Wildlife Security

Past Patrolling and Protected Area
Poaching Information Information

Learn Behavior Model

Game-theoretic

Reasoning Route Planning

Patrol Routes
Poaching Data Collected
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Wildlife preservation

» Tambe et al (Xu et al, 2022) developed the PAWS system (Protection Assistant for
Wildlife Security

» PAWS allows forest rangers to optimize their patrols to maximize the probability of
finding snares and other traps
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Fighting poverty

* Ermon et al (2020) used publicly available satellite images to - using the amout of
nightlight - predict the levels of poverty in different countries in Africa

a b NL imagery C NL predictions
- . . . :"" I, .
L-l' - v, I L
; | L. .
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Wealth index
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“What about mv research?”
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How can Al help?

* Al's impact in research ranges from to

L Y

Search Discovery

Accessing knowledge in data ldentify new patterns in an

W TECNICO LISBOA
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open-ended manner




Tools

Literature review (summarization, reference search
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intelligence by merging the capabilities of deep
learning with reinforcement learning (Hu, 2024).
These advancements have facilitated the
successful implementation of deep reinforcement
learning in various real-world scenarios
(Indrapriyadarsini et al., 2021). The amalgamation
of deep learning algorithms into reinforcement
learning has given rise to the field of deep
reinforcement learning, enabling the creation of
sophisticated decision-making systems
(Rajapakshe, 2019).

The utilization of deep neural networks in
reinforcement learning has shown substantial
progress, allowing agents to learn effective policies
directly from intricate sensory inputs. This progress
has led to significant breakthroughs in domains
such as game playing and control tasks (Mnih et al.,
2015). Deep reinforcement learning has notably
excelled in tasks like playing Atari games using raw
pixel data, underscoring its proficiency in managing

L Ask a question... (type '/' for menu) >

reinforcement learning (DRL), a
powerful tool that combines the
representational ability of deep
learning with the decision-making
prowess of reinforcement learning [
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Section: Introduction

“..These advancements have led to
the emergence of deep
reinforcement learning (DRL), a
powerful tool that combines the
representational ability of deep
learning with the decision-making
prowess of reinforcement learning |
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Section: Introduction
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http://www.scite.ai
http://elicit.com
http://www.perplexity.ai

Tools

Support to document production and collaborative writin

* Bit Al (bit.ai
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http://www.bit.ai

Caveats

 Although these tools can help, texts produced by Al tend to be verbose and exhibit
complex language

* This can impact the clarity of the message you are trying to convey

 Using these tools, for example, to write paper reviews may not be well accepted by
authors

* Authors expect to have their papers reviewed by peers and receive constructive
criticisms
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